3D Motion Estimation using a Token Tracker
نویسندگان
چکیده
111 1.11is u t i c l e we descr ibe the i ~ ~ ~ p l e t ~ ~ e ~ ~ t a t i u ~ ~ o f a sys tem l e v 1 1r.11 k i n g t c ~ k e l ~ s o n a sequence o f perspective v iews a n d use IIIV res111t t o c o n ~ p u t e the YL) ~ n o t i o ~ ~ f a cantera a n d t h e 3D -1 I 11, I u r r ul' the scene ( u p l o a scirle factur) . Wt. ~ w o v ~ d e t i rs t a l l overv iew u f the ent i re process fo r mea;III IIIK IIII~I~I: flow. We 111e11 p r e s e l ~ t a paranretr ic r c p r e s e ~ l t a t i o n I.,, IIIIV SV~I I I~ I ILJ wh ich s i ~ ~ ~ p l i t i e s the i ~ ~ i l ~ l e ~ ~ ~ e t ~ t a t i ~ ~ ~ o f t rack1111: vtlge l i ~ l r s . l'l~i~ is fo l luwed by tile J e s c r l l ~ t . i o ~ ~ o f predict ion, III.III II~IIC: .IIISI 11pd.11i11g o f t,Itc iill.ige I l t ~ w 111uelel. T h i s f o r ~ ~ r a l i ~ ~ r III,IL~.. IIO~~II~IC. a fast 111atc11i11g ~ ~ ~ ( I ~ I I ~ I I I I . 1'111.tlly we r u ~ ~ s i d e r t h e 3D 111utiu11 e s t u ~ ~ a t i u i ~ si11g t h e tz1 1 3 r~,r/rl:s o f ~ h e ~ e y r n e n t s he ing t racked 'I'l~e fact thd t they d u n o t Q ,,I I ~ , ? I N B I I ~ ~ ill g w e r a l t o the same p l~ys ic ill poi111, i~ a m a j o r source I t I AIIIILII~.~ o11e is the preseuce u f zncorrecl mulches. 111 t h i s t . & . a IIW ~ A I ~ I I I I ~ tea I l l l iques for IIIOIIUII e>tit11~1Lin11 f a i l w l ~ i l e 011r I,.. I~IIII~IIV I ) I O V ~ ~ p a r ~ i c u l a r l y r o b u ~ t : t l ~ e i l l co r rec t ~ l ~ a t c l r e s are a1~1c.a IV+I Ily tl118 t l ~ o t i u n e s t i n l a t i o ~ ~ 1111it and the i l r fo r l~ l i r t i o l l on 1.11. t ~ ~ ~ I I ~ ~ ~ ~ J I ~ I I ~ ~ ~ ~ I I ~ ~ J are given Lo the tukr11 t racker. I, 1 IIII,.IILJ 11,1ve been car r ied ~III~ O tc.11 i t l ~ a g e sque l l ces I .eLa,l, l q .I I I I ~ ~ V I I I ~ I .ullt:ra, s l ~ u w i n g tl1,11 31) IIIUI io11 a11c1 YD strucI ~ I I ,. ,V.IIIII.~I~~~II is 1.1s~ a n d r e l i a l l e . I 'I'IIE TOKEN TRACKER 1 ;IV<.II .r d r q u u w e o f ilnages, one has 11, tr;rck t ~ ~ o v i l r g u l ~ j e c t s in I 11,. st c.11t.. O u r approach uses tokens based UII l l~oe segr l~ rn ta cor~ t ~ . ~ ~ o l l ~ l i l l g t o 111e edges ex t rac ted f r o m the sraue. However, it is u . p r ~ l r w l ~ i l v l a , uo le t l ~ a t o ther t o k ~ l l d as pn iu ts u f in terest (COTII-.IS, tvi l t le poit l ts..) ca l l be co~~s iderec l w i t h o l ~ t aHert i l rg deeply 111,. r ~ l j i t ~ ~ ~ i l l ~ ~ ~ ~ . 'l'11e edges are 01~tai11c:J tI1roug11 the use o f a n I.III IIII~II J ) C ~ ~ ~ U I . previousIy d e v e l c q ~ e ~ l 11 1. AII edge l i l ~ k u ~ g s tep . I I~~I , f i IUDI~~UII~I a p l ~ r o x i t t l a t i o ~ ~ give the Iit le seg111e11ta 011 wh ich I 11,. I I .I# L I I I ~ is (IoII~. O u r track111g approat 11 is I>asrtI 011 a comI,III~ILII,II UI il pred ic t ion step JII~ a I I I ~ L ~ ~ I ~ I I ~ ~ ~ r o ~ e s s . K a l l n a n II~IVIIIIK la 11seJ t o 11elp t r a r k i l l g I>y l , ruv lc l i~~g rc 'wonable estiIII.~IV* #>I' the r e g i o ~ ~ where t h e n1~rtc11111g yrocess 11.1s t o seek f o r .I t~c~;.;.il,la 111atc11 bctween t o k e l ~ s . C u r r e s l r u ~ l c l e ~ ~ r e ill tlre search .,IV.I 1.1 ~ I ~ ~ I I ~ t11rougl1 the use o f a s i ~ ~ l i l i r r i t y f u ~ ~ r t i o n based o n .-I lam): 1r.11 l ~ r e s 01 (Ire l i ue s e g ~ t ~ e n t s . W11t.11 wurk ing w i t h a large >4'11111'111 t. 111 fr.1111t.s, i t is possible t11.1t sttt l lr olr jects 111ay appear 1 1 1 ,.. I (4,t.tlly v r pa r t ia l l y ; OII K.I~III.~II l i l t r r i ~ ~ g based apI~I~..,,I, . , ~ l ~ , w ~ t u I ~ , u ~ ( l l e t h i s p r o I ) l e ~ ~ l vl G N ~ 111siot1 ill il etfective w ,, ~ ~ . ~ ~ ~ ~ ~ I I I I I ~ ~ I I L Y I IV~ t1ee11 carr ied LIII~ OII 11~1sy s y n t l ~ e t i c d a t a .#IOI a n 1 0 IY.II *(CIICY ~ ~ L t ~ ~ i l l e c l ~I,UIII a IIIUI,IIC IC~IUI. SOIII~ exper i I,,* I,I ,,I I~.SIIII~ 1 OII, t . r ~ l i l l g t l~t: rei11 scet~es .IV a l f i a ~ w ~ ~ I h a 11 I~A,,I, ( i e. l i ~ l e s e U t l r e l ~ ~ ) k ~11; r ra r~er iucd Iny t lre f u l l u w i ~ ~ g I I V ~ IB.II'.LII&~L~~Y . ' 1 ' 1 1 ~ ,)II~II~:I~~UII 0 o f t l ~ e I iue seg111e11t. ' 1 ' 1 1 ~ 111ag11itu~1e u f t11e g r a \ i ~ e ~ l t a lung tlre IIII~ seg111e11t. T h e 1~11gt l1 L o f the l i n e segnlent. T h e d i s t a t ~ c e o f the o r i g i n t o t lre l iue segnrent deno ted b y l l ~ e paral l re ler c. ' r l ~ e J h t a l l c e denoted d , a l u ~ ~ g tile l iue f ro tn the perpendicu1.1r i~ l te rsec t iun t o t h e 111ic1poi11t u f t h e segnrent. A K a l ~ l i a r r f i l ter i used t o a i d t r a r k i l ~ g by p rov id ing reasonable eatitnates o f ~ l r r eg ion wl lere t l ~ e ~ ~ ~ a t c l l i l ~ g process has t o seek fo r a possil,le m a t c h b r t w c e n t u k v l ~ s . K a L n a n f i l t e r ing is ;I s t i ~ t i ~ r i c ,rl a l ~ p r o ~ c h t o es t imate a t imeva ry ing state vec to r XI fi.*)tl~ l loidy III~UII~CIII~II~S Z1. Consider t h e es t imat ion o f Xttr I~OIII 111s II~..L III.(.IIIC.IILY u p t u t h e ins tan t t, Ka lma l r f i l t e r ing i s a tecur.ivc c j t i l ~ i ~ l l i ~ r ~ ~ schen e desig~red t o m a t c h tlre d y n a m i c syste ln 111t~cle1, t l ~ c st; l t ist ics o f t l re e r ro r between the m o d e l ancl real i ty , a11J t llr IIIIC~I t a i n t y associated w i t h t h e measurements. I11 o u r approach, a K a111la11 li11t:r is used separate ly o n each o f t h e f ive parameters d e t i ~ ~ e t l al,ovr t o c s t i ~ l l a t e a state vector w h i c h is s imp ly the t in le va ry i l l g 111tdiu11 II.I~.IIIIC~~.IY o f in terest l ~ a n r e l y the posi t ion, t l re vel.,city .11111 tile ill c ( . l v r a t i u ~ ~ fo r t h e paramete rs c a n d J , t h e angul.11 ~I~,~III(~II t ~ ~ ~ t l 11,s a l ~ g u l a r ve loc i t y fo r t h e paramete r 0 a n d orrly t l ~ r I B ~ U ~ I I ~ , ~ I B 1481 (111. p;u.all~eters leng th L and n ~ a g e i t u d e u f tlac g l a a l ~ e ~ ~ t (: .I~>IIII~(,~ I,, IJC coustant . T h e K a l n ~ a l r l 1 1 1 ~ r c q l ~ , i t i t v l l ~ l.i<.tl 111 11ais paper involve discrete t i m e steps: S t . ~ t r vr, tot II*,I~I ,II ia 11set1 such t h a t XT = (zt, i t , il) i s t h e p u i t i o l ~ , v t : l~c i ~ y , a114 . r (celerat ion o f the parameter considered ( c,J,b,l.,ur (:) a t ~11c L'I' t i ~ t ~ e st p. T h e K a l m a n f i l ter ca l l I,e v iewed ct~~la i . t . i~tg 111e fu l low ing steps: T h e 111odt.1 o f t h e systr111 ~ l y l l a ~ ~ ~ i c s is: T h e e r ru r o f tile IIIVJCI ~I.IIIII rea l i t y i s given by tV,, a aerut l r ra l l w h i t e (:..ussi:u~ process uf covariance Ql : I is a t l lacr ix w l l i c l l evulves the pos i t i on x, t l ~ e veloci ty i a n d tile : ~ c c v l e r a t i u l ~ 3 f r o l ~ r one t inre s i u ~ ~ l ~ l e t o i t~ lu t l te r . 11. is easy t t i ver i fy LllaL aasun~ ing a n ~ o t i v ~ ~ wit11 r~~11st;u11 arceleratic111 le.rds 1,) 1 1 ~ f o l l o w i ~ ~ g t r ratr ix : , I I ltis is t l ~ r wv l l ~IIIBWII equa t ion o f a d r o p p t ~ l ul,jt.l I fur a ti111e IIII~ # \ d l , I t . ' l l ~ e I I I ~ ~ I Y U ~ ~ I I ~ C I I ~ 111t1de1 11sed is: ( V ) I ; ( v ) I: , 111 < * I I ~ ,111pIic g ~ ~ i c , ~ ~ , the 111easureIlhe11t ~ < 1 e l Z assu111es t11at t 11,. I I O S ~ L I S ~ I I r (1.r the value of c , J, 0 , L or (;) is Ineasur.11,1tt 11.0111 t11e l l ~ a t c l ~ i ~ ~ g 1)rocrss wllile the velocity i a11cl 111,. ; ~c . t r l r r a t l o~~ I are sot . Therefore $ is t l ~ r sc dlnr rorreS I I I ~ I I ~ I I I I ~ 111t11e position z and H1 is a in~ l~ ly tile u ~ l c e r t a i ~ ~ t y x . C'l~ousit~g this u ~ ~ c e r t a i ~ ~ t y it1 a ~ l ~ a ~ ~ n e r rt!Hectil~g our ;I lwia~ri e s t i l ~ ~ a t e of the a ~ l ~ o u n t of noise to be expectecl f r u ~ l ~ t l ~ e p~evious step ( Digitizing effects, edge ~ l e t c c t i o ~ ~ .111tI 1~11lygo11a1 a p p r u x i ~ t ~ a t i v ~ ~ ) lends to deal wit11 a s111al1 u ~ ~ c . c ~ l a i r ~ l y lor tlre p a r a ~ ~ ~ e t e r s c , 0 a r ~ d C', and a large UII cert;ri~~ly fur t l ~ e u~~reliaLle paralrleters L rlrd J due to t l ~ e I ~ I I I ~ ~ U I I I etlr< ts wllic11 break liue segnleuts. Aftt.r t l ~ e Illrasurelnent at time 1-1 has been done, t h ~ s tiwe ~ ~ l ~ ( l ; r l r ~.cluatiola predicts the aystenl state nt t i n ~ e t fro111 tllr e ? s ~ i l ~ ~ , ~ t e t l vilfues of the system state a t tilne 1-1. 111 our . ~ l ~ l ~ l i c ; ~ t i o ~ ~ , tll s equation predicts the value for z at time t I I I ~ I I I t l ~ r i ~ ~ l ' u r ~ ~ ~ a t i o n s vailable at t i ~ n e t I. ( 'ov;rri ,~~~ce pr diction for s ta te vector : 'I'llis equatio~r gives the statistics relatil~g the estur~ated JI ,rte vectors to the u ~ ~ ~ ~ ~ e a s u r a b l e ideal state vectors. ('a,varia~~ce prediction for the ~ ~ ~ e c r r i u r e ~ ~ ~ e l ~ t vector: , , 1 l ~ i r eclt1ati4111 gives the s~a tL t i c s of the e s t i~ l~a ted n~odel I~~t*.rsurrlllel~t. III our apldicatia~l~, it t l t . t e r ~ ~ ~ i ~ ~ e s the search a r t t ~ I U I L I I C 111;1tchi11g 1)rucess. '1'111s r q u a t i u ~ ~ i ~d ica t e s how 111ucl1 to weight each new 111easllrei1leltt. Note that a s111all u ~ ~ c e r t a i ~ ~ t y Rt ( precise rlleasurelllellt ) causes a large weigl~til~g Kt and therefore leads L ~ I a rurrec~ed s ta te estimate doternlined n~auily by the llleasurrtllellt. A l u g e uncertai~rty Rt causes a s~na l l weigllli~lg l i t . x t / t = x t l 1 1 t Kt(-% ~ t x t / t I ) , . I his e c l ~ ~ , i t i o ~ ~ ia used to update the s t ~ t e 111odc1. . > 1111s eqt1atit111 is used to upclate tile J L J I ~ S L ~ C S couplil~g llle rdt1111alec1 sl.klc vectors t o Ll~e u ~ ~ ~ ~ ~ e a s u r a l > l e ideal state vecL I , ~ IZor eac 11 tokel~ of the illrage 111ode1, a se l rc t i t ,~~ ( s f t l ~ e ~ .egi t~u wllere tile I I I . I ~ < ~ I ~ I I ~ process l ~ a s to seek Lm ;I ~),ossil,k I I I . I I I ~ I I I ~ ~ W C ~ > I I t,s~ke~ls is ~)rovitled tl~rougli the use .I : I I I I I ~ . I I I I ) I I I I I I< I IUI I . 'l'11W ~ I I I I ~ ~ . ~ ~ . I I t~ses l11e ~ ~ n c e r t a i ~ ~ t i e s I I ~ I I V I I ~ ~ , ~ ry 1111. l i . l l ~ ~ l , u ~ hltcril~g step OII eacl~ estinlate. It allows tu krcnl) cr111y t11v I ~ I ~ ~ . I I S withill the de;trcI~ artla. A score for err11 c . ~ , r ~ r s l ) c > ~ ~ ~ l t . ~ ~ c c is L I I I I t .~lclrlated ill urdur to d l a l ~ ~ b i g l ~ a t e J O I I I ~ ~ ~~ , s s i l , l e I I I I I I I ~ ~ ~ I ~ . 1111t01es, usillg a differe~~ce ~ ~ ~ e a s u r e . To this end, we use a 11v1111.rlhrc1 liatalrce betweell tile tokeus, detiued 3ii a weiKllted J U I I I *,I glilfrre~~ct:~ between the respective parall~eters values. OIM e .I t8,kr11 froll~ t l ~ e current frame has h e m 111atc11eiug the result of the 1ial111a11 hlteri~lg. I;or eacl~ token of tllc i ~ ~ ~ a g e Huw r ~ ~ u d e l , rel~rest.lltt.d by a fv.~lure vector of 5 CUII I I J~~I ICI ILY, we wish LO knuw whit 11 t ~ , k c i ~ 111ig11t c . ~ r r e s p o ~ ~ d to it. ' I ' l ~ i~ is Jib~le t l ~ r ~ u g l r the use ul a 3 ~ ~ ~ ~ p 1 c L V I c,f , ~ ~ ~ r i I , u t e teals I I ~ ~ I I ~ ; tlte cutrenl v.Llues uf tile Ilrra..urc, L I I C ex l~ t .< t e~ I value of tllr C U I I I ~ ~ I I I C I I L and its u l ~ c e r t . ~ i ~ ~ t y . 'l'lnii 1t*,1~1~ I, , c~ lcu la t e the M , I I I . L I ~ I I ~ L ~ ~ db ta l ce , explai~lecl ~ , ~ l u w , 1.1r e.,, 11 ci,rl~pullrnts and to ,lee Idre a toke11 of the new frc~1l~e i t ~ ~ i t l c a st..r~c 1, . I I ~ A if ill1 t l ~ e distailces ;u.e less t l ~ a n ;I fixed tl11es11(,1,1. T l ~ e co r rc s l )ond~~~ce u col~trolleIII.C ~rtwt,c.~~ the 11e.w token and tile eslill~atcd tokel~ by the I I I I ~ ~ I ~ . ~ I I I ~ ~ 01 llle es t i~l~;r t rd token. It is deliued w follows: Let t:x11 uew tbkelr, u.11et1 ftu111 tile l l ~ a t c l ~ i l ~ g process, 11e rrprese~lted by a feature vector 111 N < ~ ~ I I ~ ~ I I ~ I I L J de~roted T,,, ;rut1 ~.lre estill~ated toke11 rel,rrar~~ted Iny T,. wit11 all ~ i i ~ c e r t a i ~ ~ t y A . 'l'llr M v l ~ a l a ~ ~ o l ~ i s C ~ I I I I . I I ~ J can a p p e u or disappeiu. A new la11t.l is affected as W U V I I as a lrew scglrrellt appears a ~ r d llre prucess c u ~ ~ l . i ~ ~ u e s without .oII t . t I . I I I ~ 1 1 e t r ack i~~g a l g o r i ~ l ~ ~ n . A label co r~espo~~a l i r~g tu a good I $ , I ~ . ~ . a l ~ u ~ ~ ~ l e ~ r c e . e r ~ a i ~ r s [ l u r i ~ ~ g all the process while false corres l ~ ~ ~ ~ ~ l t ~ ~ ~ r e s cue re~noved after three frarrlos ge~~eral ly . It should I N ~o t ) i~ r~ed uut that the a l g o ~ i t l r ~ ~ ~ < a11 CIJIJC wit11 li~rr s eg~~ ien t s I I I I I V I I I ~ wit11 clillererrts ~ r r o ~ i o ~ ~ s 'I'llia i l l~~s t r a t e s the etticie~~cy of I 11.. usc.(l approach. I 5 TIIE MOTION ESTIMATION , , 1111: ~~ro l , l en~ is now to use the tokt:~rs r~rat<l~etl ovel. the sequence of i ~ ~ ~ a g e s to compute the 3D motiul~ a11,I :%I) S I ~ I I ~ I lrre ol the scerre. I I I our case the toket~s beirrg ~ ~ ~ a t c l r e ( l arr the r r t r r r r r r f~e~ of segrnerrl~. Tlre fact that they do not co r r e s l )g~~~J in general to the sanre physical point is a new n i ~ j o r source uf error. Alru~.ller L the IJreaellce of irrcorrecl mulches. Mi~rry teclr~rit~aea have bee11 proposed tu solve tlrL 1r1uLle111 wit11 li~lear 14,71 or iterative 131 a lgu r i t l~~~rs . U~r fo r t e~~a te ly they rrac11 their I ~ I I I ~ L very quickly as the noise UI the d;ttIr IIIcrrclses 12,5). Tlre iterative alg(1ri111111 we use(1, whi~11 pruve to I J ~ robust 011 real images, is l ~ a s e ~ l 011 ;I very si~rrplr collcrpt: the itIra is to look, ~ I I I O I I ~ :ill the possible nrotior~s, I.he r~lre tl1.11 ~ ~ ~ i ~ r i ~ r r i r e s the difft:rence 1,ctwet.n t l ~ r measured, a r t r~a l i ~ r ~ a g e .11111 the image obtainetl, sy~rllresizt!d using I Ibis 11101ion. *. 1. 11. 1. ., , 1 8 1,; I; ; KJ., , l-ij.-7i q i j 1, 6 Problem Definition ji: .-I.
منابع مشابه
An evaluation of 3D motion flow and 3D pose estimation for human action recognition
Modern human action recognition algorithms which exploit 3D information mainly classify video sequences by extracting local or global features from the RGB-D domain or classifying the skeleton information provided by a skeletal tracker. In this paper, we propose a comparison between two techniques which share the same classification process, while differing in the type of descriptor which is cl...
متن کاملA 3D Feature-Based Tracker for Multiple Object Tracking
This paper presents a 3D feature-based tracker for tracking multiple moving objects using a computercontrolled binocular head. Our tracker operates in two phases: an initialization phase and a tracking phase. In the initialization phase, correspondence between 2D features in the first stereo image pair is determined reliably using the epipolar line constraint and mutually-supported consistency....
متن کاملA 3D Feature-Based Tracker for Tracking Multiple Moving Objects with a Controlled Binocular Head
Object tracking is an important task for active vision and robotics. This paper presents a 3D feature-based tracker for tracking multiple moving objects with a computer-controlled binocular head. Our tracker operates in two phases: an initialization phase and a tracking phase. In the initial-ization phase, correspondence between 2D features in the first stereo image pair is determined reliably ...
متن کاملMulti - agent tracking under occlusion and 3 D motion interpretation
Tracking multiple objects in surveillance scenarios face considerable difficulty in handling occlusions. We report a composite tracker based on feature tracking and colour based tracking that demonstrates superior performance under high degrees of occlusion. Disjoint foreground blobs are extracted by using change masks obtained by combining an online-updated background model and flow informatio...
متن کاملCombined GKLT Feature Tracking and Reconstruction for Next Best View Planning
Guided Kanade-Lucas-Tomasi (GKLT) tracking is a suitable way to incorporate knowledge about camera parameters into the standard KLT tracking approach for feature tracking in rigid scenes. By this means, feature tracking can benefit from additional knowledge about camera parameters as given by a controlled environment within a next-best-view (NBV) planning approach for three-dimensional (3D) rec...
متن کاملSkeleton body pose tracking from efficient three-dimensional motion estimation and volumetric reconstruction.
We address the problem of body pose tracking in a scenario of multiple camera setup with the aim of recovering body motion robustly and accurately. The tracking is performed on three-dimensional (3D) space using 3D data, including colored volume and 3D optical flow, which are reconstructed at each time step. We introduce strategies to compute multiple camera-based 3D optical flow and have attai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1988